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Abstract. A nonlinear wave, in general, is equivalent to a 
nonlinear dynamical system, which exhibits the phenomena 
of chaos. By means of techniques of nonlinear dynamical 
systems, we  have investigated the conditions under which 
nonlinear AlfvCn  waves and lower-hybrid waves can become 
chaotic. The role of  heavy ions, in controlling the chaos in 
magnetoplasmas, is examined. AlfvCnic chaos is shown to be 
a potential source for AlfvCnic turbulence with k- l  spectra. 
Anomalous heating and particle acceleration resulting from 
chaotic fields, generated by lower-hybrid waves, are briefly 
outlined. 

1 Introduction 

The subject, of Chaos, is truly interdisciplinary. It occurs in 
a variety of physical Systems e.g., astrophysics, geophysics, 
optics, condensed matter physics, plasmas, fluids etc. and 
also in chemical systems, atmospheric sciences, biophysics, 
neural networks etc. The mathematical techniques, to study 
chaotic phenomena in any  of these systems, are the tech- 
niques of nonlinear dynamics. Historically Jules - Henry 
Poincare was the first person to recognize the chaotic be- 
haviour of a dynamical system. He encountered this unex- 
pected behaviour in his studies of three-body problems in 
planetary systems. The puzzeling behaviour encountered by 
Poincare was simply because he was dealing with noninte- 
grable systems, which are defined as : A system with N de- 
grees of freedom, if it has N independent integrals of  mo- 
tion, is an integrable system. This is only a necessary con- 
dition for integrability. The necessary and sufficient condi- 
tion for integrability is satisfied only if N independent con- 
stants of motion C1, C2, C,, .. . . . . ..CN are in involution i.e., 
{Ci, Cj} = 0, where { } represents thePoisson Bracket. An 
integrable system, e.g., systems governed by nonlinear evo- 
lution equations like KdV, Nonlinear Schrodinger (NLS) and 
Derivative Nonlinear Schrodinger (DNLS), can never  lead to 
chaos whereas a nonintegrable system would. As a beau- 
tiful, simple example of a nonitegrable plasma system, we 

can mention the motion of a charged particle in a magnetic 
field  of the form: B = & Bo tanh(z /6)  + G Z  B, . This 
field characterizes the quasi neutral sheet of thickness 6. B, , 
the normal component of the magnetic field, no matter  how 
small, leads to stochasticity in the otherwise integrable sys- 
tem (Buti, 1988).This happens since the system loses the in- 
volution property due to the presence of B,. Chaos also 
appears when perturbations are applied to integrable systems 
( Contopoulos, 1985). 

The study of phenomena of chaos, in plasmas, is being 
pursued essentially to understand the phenomena of  plasma 
turbulence which is very often observed in laboratory, space 
as  well as in astrophysical plasmas (cf. Ashour-Abdalla and 
Baker, 1991 and other papers in this special issue on Chaos 
and Stochasticity in Space Plasmas). Alfvkn  waves are a 
ubiquitous feature of magnetoplasmas. Implications of exis- 
tence of large-amplitude AlfvCn  waves in many cosmic plas- 
mas  have been investigated. Some of these examples include 
turbulent heating of stellar corona (Pettini et al., 1985), co- 
herent radio emissions (Lakhina and Buti, 1988; Lakhina, 
Buti and Tsinsadze, 1990), interstellar scintillations of ra- 
dio sources (Spangler, 1991), generation of stellar winds and 
extragalactic jets (Jatenco-Pereira, 1995) etc. AlfvCn  wave 
trains as well as Alfvtnic turbulence have long been  observed 
in the solar wind (Belcher and Davis, 1971) and  cometary 
plasmas (Scarf et al., 1986; Tsurutani and Smith, 1986). Burlaga 
(1991a, 1991b and references therein) has done  the detailed 
analysis of the solar wind data obtained from various space 
crafts ; he found some signatures of chaos e.g., multifrac- 
tals and intermittent turbulence in the solar wind. Observa- 
tions of Alfvtnic intermittent turbulence are also reported by 
Marsch  and Liu (1993) and Tu and Marsch (1995). All these 
observations are clear indications of the significance of in- 
vestigating the nonlinear and chaotic behaviour of  Alfvkn 
waves. Some theoretical attempts (Ghosh and Papadopou- 
los, 1987; Hada et al., 1990; Buti, 1992; 1997; 1998; Buti 
and Nocera, 1999a; Nocera and Buti, 1996; 1998) have  been 
made to study these chaotic AlfvCn waves.  Hada et al. (1990) 
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had included dissipative effects whereas kinetic effects were 
incorporated into  the DNLS equation by Rogister (197 l),  
Mjolhus and  Wyller (1986,1988), Spangler (1989,1990) and 
Medvedev  and Diamond (1996). 

Besides Alfvtn waves, lower - hybrid waves are also ob- 
served in a variety  of plasmas. It is known that these waves 
can become unstable due  to a variety  of free energy sources. 
The conditions under which lower - hybrid waves become 
chaotic have been investigated by Smith and Kaufman (1975), 
Karney  and Bers (1977) and  Karney (1978) . The problem 
of anomalous acceleration, of  heavy ions by chaotic lower- 
hybrid waves in  the cometary environment, has  been stud- 
ied  by Buti and lakhina (1987). The hot (nonthermal) elec- 
tron beams, escaping the injection region ( top of the coro- 
nal loop) along the coronal magnetic field lines, impinge on 
the cooler chromospheric plasma at the foot of the coronal 
loop and excite the lower - hybrid waves. Lakhina and Buti, 
(1996) found that the chaotic lower - hybrid waves  can pro- 
vide a potential source for the anomalous acceleration in the 
solar corona. The present paper is essentially an  overview  of 
the chaotic Alfvtn and lower-hybrid waves . 

2 CHAOTIC ALFVEN WAVES 

The governing equations for finite-amplitude Alfvtn Waves 
in a dispersive medium, like a magneto-plasma, are the dis- 
persive MHD equations: 

and 

a p  - at + v .  ( p v )  = 0, 

p -  = -Vp+ J X B,  
d v  
d t  

dB 
- = V x [(v x B) - -(V x B) x B . (IC) 

1 
at P 1 

In eq.(l), B is normalized to B ~ ,  v to vA = ~ ~ / ( 4 7 r p ~ ) ~ / ~  
(VA being the speed of AlfvCn  Waves), p to P O ,  t to inverse 
of Ri, the ion cyclotron frequency and 1 to VA/%. The sub- 
script ’0’ refers to the equilibrium quantities. Note that the 
second term on the right hand side of Eq.( lc) is  due to ion in- 
ertial effects in the generalized Ohms law. We would like to 
point out that the set of equations (1) would not be valid for 
systems with - 1 because in that case the kinetic effects 
become important. 

2.1 Evolution Equation for AlfvCn  Waves in Homogeneous 
Plasma 

For wave propagation along the direction of a uniform mag- 
netic field Le., along x - axis, Eqs.( 1) simplify to : 

a a a p  ~2 

ax  ax (1)) = o ,  - ( P % )  at + -(pvz2) dX + - + - (3) 

a a dB 
-(pG) + -(pw,G) - - = 0, 
at dX  dX 

d B  d - + -(w,B - G )  = -i- at ax 
and 

where w, is the flow velocity along the direction of propaga- 
tion, y is the ratio of the specific heat, B = (By + i B,) and 
.i, = (wY + i w, ). For pressure, we  have  used the adiabatic 
equation of state i.e., pp-Y = const. 

For p # 1, these equations have  been simplified by using 
reductive perturbation methods (Tanuiti  and  Wei, 1968; Ver- 
heest  and Buti, 1992; Buti, 1992; 1997). For the magnetic 
fluctuations carried to third order, they yield the following 
evolution equation: 

Equation (7) is the well known derivative nonlinear Schrodinger 
(DNLS) equation. The plus and minus signs in  the last term 
correspond to left and right hand polarization respectively. 
Equation (7) can be solved analytically; its exact solution is 
given by (Kaup and Newell, 1978; Verheest  and Buti, 1992): 

where B, is the amplitude of the soliton, 

0 ( x , t )  = - V, x + 3 tan-’ [(2ll2+1) tanh(2V, x)].(9) 

0 is the phase and V, is the soliton speed defined by, 

Hada et al. (1989) had shown that Eq.(7) can give a vari- 
ety of solutions, namely, (1) periodic envelope modulations; 
(2) monochromatic waves; (3) hyperbolic solitons; (4) al- 
gebraic solitons. On using the Lagrangian approach, Ken- 
nel et al. (1988) had derived the vector derivative nonlinear 
Schrodinger (VDNLS) equation that governs elliptically po- 
larized AlfvCn  Waves. 
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2.2 Evolution Equation for AlfvCn  Waves in Inhomogeneous 
Plasma 

For AlfvCn  waves in inhomogeneous plasmas, once again by 
using the reductive perturbation method, Buti (199 1) had red- 
erived the governing evolution equation. In this derivation, 
even though no explicit assumption about the homogeneity 
of the magnetic field  was  made, implicitly the field consid- 
ered turned out to be homogeneous because of the slab ge- 
ometry  used. To overcome the restrictions imposed by this 
implicit assumption, Buti et al. (1999a) have incorporated 
spherical geometry. On using equations (1 )  in spherical co- 
ordinates and assuming no variations along 0 and 4 direc- 
tions i.e., 8/80 = 8/84 = 0, Eqs. (1) reduce to: 

dP 1 8  2 - + - - ( r  pv,) = 0 ,  d t  r2 dr 

d v l  B, d 
d t  r dr 

p- = - - (rBl) ,  

and 

I d  
d t  r dr  

dBI = --(B,vl - w,Bl) + x-" 

( 1 c d )  

where r is the radial distance, B l  = (Bo, Bq), V I  = ( w e ,  w + ) ,  
and B i  = (Bz + B;). Once again, for pressure, we use the 
adiabatic equation of state i.e., pp-Y = const. In order to 
satisfy eq.( 1 la) and the condition, diw Bo = 0, the equilib- 
rium density po ( r )  and the magnetic field Bo ( r )  must satisfy 
the conditions: 

Bo(r)  r2 = const (12) 

and 

po(r) U ( r )  r2 = const. (13) 

For weakly nonlinear systems, we can use reductive per- 
turbation scheme to derive the evolution equation from Eqs.( 1 1). 
Following the procedure outlined in Buti (1991), we use the 
following stretchings: 

In Eq.(14) E is the stretchingparameter and V ( r )  is the phase 
velocity of the AlfvCn  wave that is given by 

In Eq.( 1 9 ,  U is the equilibrium streaming plasma velocity. 

On using the expansions for density, velocity, pressure and 
magnetic field appropriate to AlfvCn  Waves ( cf. Buti, 1991) 
for a spherically symmetric system, we obtain the following 
evolution (MDNLS) equation: 

dB 3 U B d -+- dr] 2 v r ] B + 4 V ( V - u )  - dr] (v2 - u2) + 

i (V - U ) 2  d 2  B 
2 v3 Bo(7)) 

= 0,  (16) 

where B = (Bo + i B4) , P(r]) is the plasma P, and Bo (7) 
is the ambient magnetic field.  In deriving Eq. (16), we 
have taken wave propagation as  well as the ambient magnetic 
field along the radial direction. As in the case of the DNLS, 
here also we  have  neglected  fifth order nonlinear terms. This 
equation, however, is valid for arbitrary inhomogeneities. We 
may note that for nonstreaming uniform plasmas i.e., for 
U = 0 and po(r) = 1, V -+ 1 and Eq. (16) reduces to 
Eq.(7). It is worth noting that the roles of spatial and tempo- 
ral variables are interchanged in Eq.( 16). It is interesting to 
observe that this modified DNLS (Eq (16)), besides having 
additional two linear terms in B, has variable co-efficients 
for nonlinear and dispersive terms. Because of these com- 
plicated variable co-efficients, it  is not possible to find  an 
analytical solution to Eq. (16) and one has to look for its nu- 
merical solution. 

Equation (16) has  been solved numerically (Buti et al., 
1999a) by means of the spectral collocation method. For the 
sake of computational convenience, we rewrite this equation 
as, 

Since eq.  (17) has temporal and spatial variables interchanged, 
we write the approximate solution for B as a Fourier expan- 
sion in time instead of space, namely 

Note that B is assumed to be periodic in time, with period T 
and frequency Xk = 27rk/T. For the numerical solution of 
the MDNLS, we do not need to introduce any artificial dis- 
sipation . In our case, inhomogeneous terms formally play 
the role of effective dissipation. As mentioned earlier, the 
problem of wave propagation is solved as an evolutionary 
problem in space. For this purpose, we assume that there is 
an influx  of  waves  at one end of the interval (e.g., closer to 
the Sun  in case of the solar wind plasma) and the waves are 
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propagating  outward.  The influx is assumed periodic in time. 
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For the numerical solution, we  have considered the evolu- 
tion of  an initial AlfvCn soliton which is an  exact solution of 
the DNLS equation and is given  by, 

and 

2 
V 

I5 = - (1 - p )  (V - U ) .  

B,,, in Eq.( 19)  is the amplitude of the initial soliton nor- 
malized to Bo ( T O )  and L is the simulation box length. We 
would like to  point  out that the solution given  in Eq.(19) is 
different than the one given  by Eq.(8). In the soliton solution 
(Mjolhus,  1978) of the DNLS equation, there are two arbi- 
trary constants K O  and V O .  For Eq.(8), we  had  taken vo = 0 
and  now for Eq.( 19) K O  has  been  taken to  be zero. 

The  time  evolution of the DNLS soliton at different spa- 
tial distances, from the reference point T O ,  is shown  in Fig. 1. 
For the case  of AlfvCn  waves propagating away from the sun 
in the interplanetary medium, this reference point  could  be 
Ro = 0.1AU. From this figure,  we  clearly see the dissipative 
effects of the inhomogeneities.  The  amplitude of the soliton 
goes down  as it propagates. Similar dissipative effects of 
inhomogeneities, in connection with  modulated ion-acoustic 
waves,  were reported by Mohan  and Buti (1979). We also 
see the steepening of the wave  and the high-frequency radia- 
tion on the leading edges. MHD simulations (see sec.5) also 
show similar behaviour. The frequency  spectra for the mag- 
netic  field intensites are  shown  in Fig.2. The spectral index, 
for the power-law spectra, is increasing with the heliocentric 
distance. We also see  breaks  in the spectra. The  break-point 
moves to  the lower frequencies with the increasing distances 
from the sun. Similar features have  been observed in the tur- 
bulent solar wind spectra (Belcher and Davis,  1971; Bavas- 
sano et al., 1982) by Mariner 5 and Helios 1 and 2. Buti et al. 
(1999a) had looked into the evolution of initial circulatly po- 
larized  Alfvkn  waves. The  evolution in this case was found 
to be much  slower  compared to the case  of the DNLS soliton. 

h 
0 
", 
m 
m 
. 

Fig. 1. Shows the evolution of B / & ( T O )  with t for B,,, (Ro) = 0.036, 
Ro = 0.1 AU, UO = 1.5 VAO and p (Ro) = 0.05. Curves labelled 1 ,  2, 
3 , 4  and 5 correspond  to r = 0.1 AU, 0.35 AU, 0.5 AU, 0.7 AU  and 0.9 AU. 
(from Buti et al., 1999a) 

and in some natural  plasmas as a genuine constituent, e.g., 
solar wind is composed  of electrons, protons and a-particles 
(helium) and  cometary plasmas have  water group ions. To 
study the chaotic processes in such multispecies plasmas, 
starting from the corresponding  multi fluid equations we  had 
derived the evolutionequation (Buti, 1992; Verheest  and buti, 
1992), which  is  given  by: 

dB d d 2  B -+a- ( B  I B 1') z t i p -  = 0. 
at dz 8x2 

with a and p defined by: 

1 I ' ' " " " '  ' ' """'  ' ' ' """ ' ' " " " '  

2.3 Chaos in  Cometary  Plasmas 
1 

So far our  discussion has  been  confined to plasmas with only 
two species e.g., hydrogen  plasma. Very often, we encounter 
multispecies plasmas with electrons, protons and  heavy ions; 
the heavy ions, in laboratory plasmas, may be as impurities 

Fig. 2. Shows the  power  spectra  for magnetic field at heliospheric distances 
0.3 AU, 0.5 AU, 0.7 AU  and 0.9 AU. The parameters used are same as for 
Fig.1. (from  Buti et al., 1999a) 
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A = O  similar Hamiltonian approach but  they also considered only 
2-species plasmas. 

A = 0.3 
Bz 

Fig. 3. Poincark  maps for a driven AlfvCnic system in  a 2-species plasma. 

where subscript s refers to different species, y is  the ratio of 
the specific  heat  and 2 is the charge to mass ratio. As a result 
of this, the localized stationary AlfvCn  waves that are driven 
by a harmonic driver can be represented by the following set 
of equations (Buti, 1992): 

where A is the amplitude of the driver  and H is the Hamilto- 
nian  given  by, 

witht = ( x  - V t ) / p  and 

To see the effect of the heavier species, here we will present 
the results of cometary plasma with oxygen ions as the third 
species. Hada et al. (1990) had earlier investigated the prob- 
lem of  AlfvCnic chaos in driven Hamiltonian systems with 
only two species. Recently Chian et al. (1998) have looked 
into the problem of  AlfvCnic intermittent turbulence by using 

For cometary plasma with 10% oxygen in abundance, 
Poincare maps, for the two-species and the three-species plas- 
mas, are shown in Figs.3 and 4 respectively (Buti, 1992; 
1996; 1997a). For both the figures, the driver is the left hand 
driver. Since all the parameters for both the figures are the 
same, Fig.4 shows the effect of the oxygen ions. Fig.3 shows 
that even for a weak driver corresponding to A = 0.3, or 
even for smaller A (not shown here), AlfvCn  waves in a 2 - 
species plasma ( without any  heavy ions ) become chaotic. 
However, as shown in Fig.4, in the presence of the heavier 
oxygen ions, the chaos appears only when the driver is rela- 
tively  much stronger. From comparison of these two figures, 
it  is evident that the chaos is reduced due to the presence of 
the oxygen - in other words, the threshold for chaos goes up 
because of  heavy ions. Physically this could be interpreted 
as the inertial stabilization due to the heavy ions. 

2.4 Controlling Chaos in Dusty Plasmas 

Dusty plasmas are prevalent in many cosmic as well  as space 
plasmas such as planetary rings, planetary magnetospheres, 
cometary environment, interstellarmedium etc. (Spitzer, 1978; 
Goertz, 1989; Northrop, 1992; Mendis and Rosenberg, 1994). 
Here we would like to distinguish between  plasmas  with a 
few dust grains and the plasmas where dust grains, satisfying 
the condition N d  X i  >> 1 ( N d  being the density of  charged 
dust grains and Ad the Debye length), form the third con- 
stituent of the plasma. Only the latter ones we  would define 
as dusty plasmas. Unlike the ordinary plasmas, dusty plas- 
mas  have very massive heavily charged dust grains. More- 
over the charge fluctuations in dusty plasmas can be very 
significant. Nonlinear AlfvCn  waves in dusty plasmas are 
governed by (Verheest  and Meuris, 1996), 

Eq. (28) is same as the  one for multispecies plasmas (Buti, 
1992; Verheest  and buti, 1992) except for the additional (last 
term) source term which is  due to charge fluctuations of the 
dust grains. The co-efficients a1, p1 and 61 for cold plasmas 
are given by: 

1 
a1 = - 

4 g '  

S 
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A = 0.8 
Bz 

BY 

" 

A = 5.0 
BZ 

and 60 as the asymptotic value  of B. 

Fig. 4. PoincarC  maps  for  a  driven Alfvknic system in 3-species cometary 
plasma  with  water  group ions. 

where p s  is the mass density , Rs is the cyclotron frequency 
and U is the drift velocity in equilibrium. Note that  in the 
absence of  any equilibrium drift i.e., for Us = 0, the source 
term vanishes;  in this case V reduces to the AlfvCn speed ( 
VA = ( B0/(47r p )  '/').  For 3- species plasma  with electrons, 
protons and  heavy dust grains, these coefficients  are  simply 
given  by, 

61 = 0. (30c) 

In Eqs.(30), the subscripts e, p and d represent electrons, 
protons and dust grains respectively.  For 2-species plasma 
i.e., for Nd = 0, note that V = g = 1, a1 = 1/4 
and = l/2. In writing Eqs.(29), we  have  made use of 
the charge neutrality condition, i.e., (Ne  + ZdNd) = N p .  In 
the presence  of  an  external  driver, Eq. (28) gets modified; 
the source term S(61, x ,  t )  appears on the right hand side of 
Eq. (28) (Hada et al., 1990). For a plane circularly polarized 
driver i.e., for S = A exp (i  k < ), Eq. (28) can  be written  in 

terms of the Hamiltonian of the system (Buti, 1992; 1997), 
namely 

de 
a< 
- = 52, 

where < = ( x  - V t )  / 2, A and R as the amplitude 
and the frequency  of the driver  and H the Hamiltonian that 
is  given  by, 

2 A1 - 2 
(B2-1) -- 2 (B-gY) , (32) 

with 

As mentioned earlier, dusty  plasmas are observed  in  nebu- 
las,  planetary rings, planetary magnetospheres and  cometary 
environment. We have  solved Eq. (31) numerically for the 
case  of rings of Saturn and for the cometary  cases.  In these 
systems,  dust grain size is typically a few microns and dust 
mass is of the order  of lo1' mp . The dust grains carry  very 
high charges  (Mendis and Rosenberg, 1994); typically zd - 
( lo3 - lo4) e. However the dust number densities could  be 
as  low as - Np.  For these parameters cy1 and 

simply  reduce to, 

(34) 

Thus  it is apparent that the crucial parameters,  governing the 
nonlinear  dynamics, are the mass density and the charge  of 
the dust grains. 

The results of  numerical computations are  shown in Figs.5 
and 6. Fig.3 shows that even for a weak  driver corresponding 
to A = 0.3, AlfvCn  waves  in a 2 - species  plasma ( with- 
out the dust grains) become chaotic. However  in dusty plas- 
mas as shown in Fig.5 for cometary  plasmas  and  in Fig.6 for 
Saturn rings, Poincare maps do not  show  any chaos. One 
gets only periodic orbits even for strong drivers  with ampli- 
tudes which  are order of magnitude larger  compared to the 
one for 2 - species plasma.  From these results (Figs.5 and 6) ,  
we can  straightaway  conclude that the chaos in AlfvCnic sys- 
tems simply  disappears  due to the presence  of  massive dust 
grains. The  procedure for controlling chaos in nondissipa- 
tive systems,  discussed here, is very different than the one 
presented  by  Ott et al. (1990) for the dissipative systems. 
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A = 0.3 A =  10 

BZ BZ 

A = 0.8 A = 25 

BZ  BZ 

2.5 Spatio-Temporal Evolution of  Driven AlfvCn  waves and V, is  the soliton speed defined  by, 

In sections 2.2 and 2.3, we  have discussed the conditions 
under which Localized Stationary Alfvtn waves,  driven  by 
an external driver, can become chaotic. In this section, we 
will deal  with the spatio-temporal evolution of these driven 
AlfvCn  waves. For stationary waves,  we could reduce the 
governing driven  DNLS equation to a set of ordinary dif- 
ferential equations (cf. Eqs.(31)) but for the nonstationary 
waves,  we  have to work with the nonlinear partial differen- 
tial equation instead, namely the driven DNLS equation: 

where a is the amplitude of the driver.  As shown above, 
the external driver in Eq.(36) simply acts as a source, which 
kills the coherent properties of the solitons (Nocera and Buti, 
1995; 1996; 1997; 1998). Unlike the DNLS Eq.(7), Eq.(36) 
can not be solved analytically. This equation is solved by 
spectral-collocation method with periodic boundary condi- 
tions. For the initial condition we take a solitary AlfvCn  wave 
packet, namely 

where B, is the amplitude of the soliton, 

(39) 

Note that Eq. (37) is the super-AlfvCnic soliton solution of 
Eq.(7) in  the wave frame of reference (Verheest  and Buti, 
1992). The reason for picking up the DNLS soliton solution 
as the initial condition is the following: Locally in the re- 
gions closer to the sun, where AlfvCn  waves are believed to 
be generated, DNLS is a good representation of the AlfvCn 
waves.  Moreover one of the basic properties of  any evolution 
equation, e.g., DNLS equation, which can be solved exactly 
by means of the Inverse Scattering Transform method (Kaup 
and Newell, 1978), is to transform any localized initial con- 
dition to a soliton solution. Dawson  and Fontan (1988) had 
numerically solved the DNLS equation with  an initial mod- 
ulated Gaussian packet and confirmed its decay into soliton 
solution. 

For P < 1, from our simulations, We observe that the LHP 
soliton very quickly, even for a relatively weak  driver, loses 
its coherent properties and goes into a chaotic state (Buti and 
Nocera, 1999a). For numerical calculations, we  have scaled 
Eq.(36) and  have taken L = 800 ( L  is the simulation box 
length), p = 0.1, K = 0.08, s2 = and B, = 0.5. The 
values of K and s1 used here are arbitrary. We could pick 
up different numbers but the resultant qualitative behaviour 
does not change. This driver could be easily taken as another 
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T (  lo4)  

Fig. 7. Transition  of  left-hand  polarized  soliton to chaos  a)  at T N 5 X IO5 
for A = 0.003, b) at T N 5 x lo4 for A = 0.03, c)  at T N 1.48 X lo4. 
for A = 0.1. Note  that T = t/144. 

coexisting wave; for this K: and Q however  would be related 
through its dispersion relation. For the parameters used for 
the present calculations, the speed of the initial soliton, in 
the solar wind frame of reference, turns out  to  be 1.025V~. 
The super-AlfvCnic nature of the soliton is simply  because 
we  have  used the super-AlfvCnic solution (37) for the DNLS 
Eq.(7). The  corresponding  width of the soliton, which is 
given  by 1/(2V.), is - 20 ion inertial lengths. We believe 
that  such large amplitude pulses, distributed over  very  many 
ion inertial lengths, have  been  observed in space plasmas. 

Fig.7 shows the time  evolution  of the driven left-hand soli- 
ton for various amplitudes of the harmonic driver. We find 
that  even for an extremely  weak driver with amplitude A = 
0.003 , LHP wave  becomes chaotic at T - 5 x lo5 (cf. Fig 
7a). Note  that T = t/(144) and A is the scaled amplitude 
; A = (123/2)a. The time-series corresponding to some- 
what stronger drivers namely, A = 0.03 and 0.1 are shown  in 
Figs.7b and 7c. From these two figures, we  see  that the chaos 
sets in  at T - 5 x lo4 and at T - 1.48 x lo4 for A = 0.03 and 

Fig. 8. Time series  for  evolution of RHP soliton  at z = L / 8  for  a) A = 
0.01, h) A = 0.1, c) A = 0.5. 

A = 0.1 respectively. It is interesting to  note that the time at 
which  AlfvCnic system becomes chaotic scales as A-' . 

In contrast, the RHP soliton is found to be much more ro- 
bust as expected from the DNLS equation. Time evolution, 
of RHP soliton at 2 = L / 8  (L being  the  length of the sim- 
ulation box),is shown  in Fig.8 for A = 0.01 (Fig.8a), 0.1 
(Fig.8b) and 0.5 (Fig.8c). Unlike the case of LHP soliton, 
RHP goes into a chaotic state only when it is driven by a real 
strong driver with A = 0.5. In case of  weaker drivers (cf. 
FigXa, 8b), only low  level turbulence is generated  which  is 
seen  in  between the perturbed solitons. This is further con- 
firmed  by Fig.9, which shows the spatio-temporal evolution 
of the right-hand soliton governed by the driven DNLS for 
the parameters identical to the case  of the left-hand soliton. 
For the weak turbulence, shown in Fig.8a, we  have calcu- 
lated the space as well as time correlations and we find  that 
the time correlations are destroyed much more  quickly com- 
pared to the space correlations (Buti and  Nocera, 1999b). 
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2.6 Turbulence through Chaotic Channels 
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Fig. 9. Spatio - temporal evolution of RHP soliton for a) A = 0.005, b) 
A = 0.01, C) A = 0.015, d) A = 0.1. 

For the chaotic states shown in  Figs. 7a-7c and in Fig&, ' 

we  have calculated the power spectra for the magnetic field 
fluctuations. The results are shown in Fig.10. For LHP, with 
a very  weak driving source ( A  = 0.003), we  find  an  ex- 
ponentially decaying energy spectrum. On the other hand, 
for the chaotic states shown in F ig .7~  and Fig&, the mag- 
netic energy  scales  as IC-' and for  the case of chaos shown 
in Fig.7b, it scales as IC-1.5. The latter corresponds to the 
Kraichnan (1965) spectrum of hydromagnetic turbulence. In 
all the three cases we do see a break in the spectral index. 
These results have a lot of resemblance with the observa- 
tions of solar-wind turbulence reported by Bavassano  et al. 
(1982). These results are in contrast to the general feeling 
that the turbulence can be generated only by an infinite (or  a 
very large) number of modes. However one can  view the sce- 
nario presented here as analogous to the system with a finite 
but large number of modes. This is indicated by Figs.lOa- 
lOc,  which  show that the energy is distributed into a few tens 
of modes. It is worth noting that the turbulent spectra, pre- 
sented in Fig.10, appear through chaotic channels only. 

2.7 Collapse and Self-organization  in AlfvCnic Systems 

Let us revisit the evolution of an RHP soliton driven by a har- 
monic driver with amplitude A = 0.01. Its evolution at T - 
6 x l o5  is shown  in Fig.1 la  where we see a highly peaked 
soliton with lBmar12 - 0.2 coexisting with a very  weak 
background turbulence. The width of this soliton, which is 
given by (2 V.)". turns out to  be approximately 1.7& 
(RL being the Larmor-radius). Thus we are observing the 
'collapsed' soliton. For the parameters used in section 2.5, 
RL in our dimensionless units (VA/Q) is 0.4. Similar col- 
lapsed soliton for the case of the driver with A = 0.1 appears 
much earlier at T - 1.4 x lo4 and with  much larger ampli- 
tude IBmal12 - 0.5  (showninFig.1lb).  TheDNLS soliton, 
in our case is collapsing mainly due to its interaction with 
the driver. This is an altogether different process compared 
to the collapse of  an NLS soliton which occurs because of 
multi- dimensional aspects (Zakharov, 1984) . We must  bear 
in mind that while dealing with systems involving such  small 
scale lengths, kinetic effects should be properly included. 

To ascertain the cause of the collapse of the DNLS soli- 
ton, we introduced a  jump A@ = 2.876 in the phase CP = 
( K X  - Rt)  of the driver at T = 5.3 x lo5 and then integrated 
Eq.(36) to determine its evolution between T = 5.3 x lo5 
and T = 8 x lo5. The resulting evolution at T = 8 x lo5  is 
shown in Fig. 12. Once again we see the bifurcation of the so- 
lution from one peak  of Fig.l  1  to  four peaks of Fig.12. Here 
we  find a much bigger surprise. The four narrow pulses in 
Fig.12 turn out to be the four solitons of our original non- 
driven DNLS equation (7). This is  a clear demonstration of 
Self-organization phenomena. The energy stored in the orig- 
inal one soliton, because of its interaction with the driver, is 
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Fig. 10. Shows  Spectra for magnetic field turbulence  generated  through 
chaos for a)  LHP with A = 0.003, b)  LHP with A = 0.03, c)  LHP with 
A = 0.1 andd)  RHP with A = 0.5 .  

redistributed into the final four solitons which  have speeds 
four times that of the original soliton i.e., 4 V, . 

In order to determine whether the self-organization / pat- 
tern formation are characteristics of the initial soliton condi- 
tion or of the evolution  equation itself i.e., the DNLS, we  had 
repeated our calculations for an initially structureless DNLS 
equation. Once again  we found that the  right-hand solutions 
are stable and appear as elliptic oscillations (Buti, 1998; No- 
cera and Buti, 1998). The left-hand solutions, on the other 
hand,  do start with elliptic solutions but unlike  RHP solu- 
tions they are found to be unstable. These ellipitic solutions 
in  turn bifurcate into the bell-shaped wave  packets. The lat- 
ter (bell-shaped) solution is also not stable. The elliptic and 
the bell-shaped solutions appear  alternatively (see Fig.13). 

.15 1 
t 

. l O ~  .05 M 
0 0.2 0.4 0.6 0.8 

x / L  

x / L  

Fig. 11. Collapse of RHP  soliton  due  to  the  driver with a) A = 0.01 at 
~ ~ 6 ~ 1 0 ~ a n d b ) A = 0 . 1 a t ~ ~ 1 . 4 ~ 1 0 ~ .  

So, we conclude that the self-organization is generic to the 
DNLS equation, and is independent of the initial conditions. 

2.8 MHD  Simulations 

As mentioned above, for large amplitude waves (6B/B 2 
l), the  approximations made  in the derivation of the DNLS / 
MDNLS equations  become invalid  because the derivation in- 
cludes  terms  only  up to cubic nonlinearities. Moreover these 
evolution  equations are not valid  for /3 - 1. For /3 - 1, 
coupling between  Alfvkn  waves  and ion acoustic waves  be- 
comes significant. One  could overcome these limitations by 
doing simulations. For this purpose let  us go back to the full 
set  of Hall-MHD equations, namely Eqs. (2) - (6) .  These 
equations are solved  by using periodic boundary conditions 
and  by taking the DNLS soliton solution, given  by Eqs. (37) 
- (39), as an initial condition (Buti et al., 1998; Velli et al., 
1999). Unlike  fusion  plasmas,  some of the space  plasmas 
have /3 > 1. In the solar wind, /3, T, and Ti (Te, Ti being the 
electron and the ion  temperature) all vary  with heliospheric 
distance. In particular, ,B spans the entire range  from /3 < 1 
to /3 > 1. To investigate the stability of the initial DNLS soli- 
ton, we  have done the simulations for different values of /3; 
spatio - temporal evolutions of the RHP solitons are shown  in 
Figs. 14 and 15. We observe a wave train on the leading  edge 
for /3 < 1 (cf. Fig.14a) and on the trailing edge for /3 > 1 
(cf. Fig.14b). However in both cases the amplitude of the 
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Fig. 12. Shows redistribution of energy into four  solitons  at T N 8 x lo5 
due  to  a  phase shift of 2.678 imparted to the driver at T N 5 . 3  x lo5. 

soliton goes down. It is interesting to compare this with the 
evolution of the magnetic field  of the LHP initial soliton. In 
the latter case wave train appears on the leading edges (Buti 
et al., 1998) for /3 < 1 as well as for /3 > 1. Moreover, in 
this case the amplitude was found to increase (decrease) for 
/3 < 1 (> 1) as the soliton evolved. We had observed similar 
behaviour (Velli  at al., 1999) for plasmas with  much smaller 
/3 e.g., solar corona with /3 = 0.05. Buti et al. (1998) had 
considered the case with much higher /3 also and showed that 
for /? = 3 for the RHF' soliton, by t = 5000 ion cyclotron 
periods, the wave train disappears. So it  is pretty obvious 
that the soliton is disrupted simply because of the higher or- 
der nonlinearities that are neglected in the DNLS / MDNLS 
equations. In fact we  had shown (Velli et al., 1999) that the 
disruption time scales as B;4. 

The density fluctuations that are taken as sort of static in 
the DNLS description, are also found to evolve (see Fig.15). 
Unlike the driven soliton that  evolves into fully developed 
turbulence (see Fig.10) through chaotic channels, in all the 
cases that we  have considered so far (Buti et al., 1998; Velli  et 
al., 1999) for our MHD simulations, we  find that neither the 
higher order nonlinearities nor the coupling of magnetic field 
and density fluctuations lead to AlfvCnic turbulence. We are 
persuing the MHD as well as hybrid simulations with larger- 
amplitude solitons to see if there is any possibility of gen- 
erating turbulence through nonchaotic channels. Velli et al. 
(1999) had looked into the soliton evolution in  the expand- 
ing solar wind by using the Expanding Box Model. They 
found that the nonlinear effects dominate over the expansion. 
Moreover their simulations showed evolution with expansion 
to be  very similar to the one obtained by Buti et al. (1999a) 
by solving the inhomogeneous DNLS (MDNLS) equation. 

0 0.5 1 .o 1.5 2.0 

t ( 109 

Fig. 13. Self-organization and pattern formation  for  an LHP wave with van- 
ishing initial condition. 
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Fig. 14. Evolution of magnetic field fluctuations for  a RHP soliton for a) 
p = 0.3, and  b) p = 1.5  at t = 0 (dashed line) and t = 5000 (solid line). 
(from Buti et al., 1998) 
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Fig. 15. Evolution of density fluctuations for a RHP soliton for a) 0 = 0.3,  
and b) 0 = 1.5 at t = 0 (dashed line) and t = 5000 (solid line). (from Buti 
et  al., 1998) 

3 CHAOTIC LOWER-HYBRID WAVES 

As mentioned earlier, besides Alfvtn waves, lower - hybrid 
waves are also observed  in a variety of plasmas. It is known 
that these waves can become unstable due  to free energy 
source provided by (Lakhina and Buti, 1996): a) a gas of 
hot nonthermal electrons, streaming relative to cooler popu- 
lation of electrons,along the external magnetic field; b) rel- 
ative drift between electrons and ions perpendicular to  the 
magnetic field; c) ions with ring type distributions in non- 
drifting plasmas. Clearly, the growth of the instability would 
depend on the nature of the free energy source as well as the 
plasma constituents but if the fields generated by these insta- 
bilities can  exceed certain threshold, which also depends on 
the nature of the plasma under consideration, the system can 
become chaotic. For simple two - species plasmas, estimates 
of this threshold field for the lower - hybrid waves were given 
by Karney  and Bers (1977) and Karney (1978). The thresh- 
old electric field, obtained by Karney (1978) for the lower - 
hybrid waves, is given by: 

where Bo is  the external uniform magnetic field, Ri is  the 
ion cyclotron frequency and W L H  is  the lower - hybrid fre- 
quency that is given by, 

For kll/  k 5 (me/mp)1/2  , ~ p 2 ~  >> a:, W L H  - 
(Re R,) ' I 2 .  We had investigated the propagation of chaotic 
lower - hybrid waves in multi - species plasmas to explore 
the possibility of anomalous particle acceleration in the fol- 
lowing two entirely different systems. 

3.1 Chaotic Acceleration of Cometary Ions 

In the region of interaction between the solar wind  and the 
comet,we have to deal with the multi - species plasmas, at 
least three if  we take into account only the most dominant 
cometary ions. The latter after their ionization are picked up 
by the solar wind. In the pick - up region, these ions are 
supposed to have ring type distribution, namely 

where Ni and E are the density and thermal velocity of the 
ions and Vi = VI , ,  is  the parallel drift velocity of the ions 
in the solar wind frame. We notice that the distribution func- 
tion given by Eq. (42) provides two sources of free energy, 
namely the relative drift between the cometary ions and the 
solar wind protons and secondly the ring in velocity space. 
Both these sources lead to lower - hybrid instability whose 
growth rate is given by ( Buti and Lakhina, 1987) : 

where a is a constant of order unity and W L H  is the lower - 
hybrid frequency given by Eq. (41).  The subscripts e ,  p and i 
refer to electrons, protons and the heavier ions. The saturated 
electric field associated with this instability turns out to be, 

It is interesting to note that this instability arises only because 
of the cometary ions since y + 0 for Ni = 0. This system 
could become chaotic if E, > Et;  Et is the threshold elec- 
tric field that is given by Eq.(40). 

Furthermore these chaotic fields would lead to anomolous 
acceleration of cometary ions provided the time (ta) re- 
quired to accelerate the ions to  the maximum energy attain- 
able from these fields is much smaller than the time ( t d )  in 
which  they drift out of the chaotic region. As shown by Buti 
and Lakhina (1987), both these conditions can be satisfied in 
the ion pick - up regions of comets Halley  as  well as Zia- 
cobini - Zinner. They also showed that in case of comet Hal- 
ley, the Of ions ( the most dominant ions) can be accelerated 
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to maximum energies of the order of  32  Mev  whereas the ob- 
served energies for heavy ions were found to be in the range 
45 - 270 Kev. A part of this energy  provided by the chaotic 
electric field is used  up for heating the plasma and the rest 
for accelerating the particles. Similarly in the case of comet 
Ziacobini - Zinner, water group ions with energies exceeding 
300 Kev were observed and the model of Buti and Lakhina 
(1987) leads to maximum energies, given to these ions by the 
chaotic fields associated with the lower - hybrid waves,  of the 
order of 2 MeV. From these figures, one can clearly draw the 
conclusion that the chaos generated by the observed  lower - 
hybrid waves is responsible for the observed energetic heavy 
ions in the vicinity of comets Halley  and Ziacobini - Zinner. 

3.2 Chaotic Acceleration in Solar Corona 

The hot (nonthermal) electron beams, escaping the injection 
region ( top of the coronal loop) along the coronal magnetic 
field lines, impinge on the cooler chromospheric plasma  at 
the foot of the coronal loop and excite the lower hybrid waves 
(Lakhina and Buti, 1996). Unlike the lower - hybrid waves 
discussed in Sec. 3.1, here the source of free energy is the 
relative drift between the hot electrons and cold electrons / 
ions parallel to the magnetic field. This drift can drive the 
lower - hybrid waves unstable if u h  > Uph (Lakhina and 
Buti, 1996) ; u h  and Uph being the parallel beam ( hot 
electron) velocity and the phase velocity of the wave. This 
instability can generate saturated electric field that is given 
by : 

where 

Here the subscripts c and h refer to the cold and the hot com- 
ponents. Once again, for the production of chaotic lower hy- 
brid waves, we must satisfy the condition EJat > Et. The 
threshold electric field Et is given by Eq.(40). For the solar 
coronal plasma parameters, namely Nc = 8 x 1011crn-3, 

and Nh/Nc  - 0.005, it was shown by Lakhina and Buti 
(1996) that the condition for stochasticity can be  satisfied 
for a wide range of  wave lengths. Consequently, lower hy- 
brid waves  can  lead to stochastic acceleration of ions in the 
coronal loops. The maximum energy gained by the protons 
from such stochastic acceleration process was found to be - 0.25 - 1.125MeV and the energy picked up  by the singly 
charged heavier ions would  exceed these values by a factor 
of ( m i / m p ) 5 / 3 .  

Tc = 3.5 X i041i", Bo = 100G, T h / T c  = 100, U h / & h  = 4 

4 Discussion  and  Conclusions 

The coherent properties of the DNLS solitons are destroyed 
by a variety  of sources, e.g., inhomogeneities in the plasma 

densities and the magnetic fields, coupling of the magnetic 
field  and the density fluctuations, higher order nonlinearities 
that are neglected in  the derivation of the evolution equation 
and by some external source like a harmonic driver. The 
right-hand polarized soliton is much more robust compared 
to the left-hand polarized one. However both, under different 
conditions can  lead to chaotic AlfvCn  waves and the chaos in 
turn leads to AlfvCnic turbulence. The power spectra of the 
magnetic field is found to  be very similar to the one observed 
in the solar wind. The phenomena of self-organization and 
collapse are also observed during the dynamical evolution of 
the Alfvtn waves. 

. 

To incorporate the nonlinear damping and the other kinetic 
effects that become significant when p - 1, we  have  inves- 
tigated the evolution of the DNLS soliton by hybrid sim- 
ulations. We find that the soliton decays  much faster for 
Alfvhic systems with /3 - 1 compared to the ones with 
/3 << 1. The other results from our hybrid simulations will 
be reported in a forthcoming paper (Buti et al., 1999b). The 
chaotic lower hybrid waves provide an  efficient source for the 
preferential acceleration of the heavier ions in the cometary 
as  well as solar coronal plasma. 
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